Binary Translation

e with Stasic Risary Trans atin

Tntegration of Geing awd QEMU

o R
s A iy b e A,

ek Peonyact Had Banary = -l == 1
- Haad lne Frace Brives hppraach

athan Tools

Binary Translotion

- *Emulatien of ane Instruction set by ancther
threugh translatice of Binary cods
- Motivatian: Running Legacy Code. Cast savings.
— server Virtuallzation, Cress 1S4 virtual Machenes
(o0 WMWare], Application Migration, Better

Dymamic Bimary Tranelatio

Perfarmance (e.g. Superoptimeer peepholel. yrewaic Blaary Framziator
e oot Ty i g Memory ard Profiling Teols ie.g. valgrind]
e - Types

precums which ruea g sppbisine

o
- Marserure: s

Starie Blnary Trevslation

Binary Translation

Issues with Static Binary Translation
ude Lincovery

Salf Wikt Cate srd Byrams.
urking

ity S P

Integration of Gems and QEMU i e s ity

« Gems . -

« Beszurcmr: Cutzul Axvmmily log frem OEM, = - N
Bemb

« Tdeat: heconstruct Hos Bnary - B

cand- Use Trace Drovan Apfreach

- =] [

—
i rsnge el iyl e bt Dynamic Binary Tranfation Tools
+ Structure of 4 Oynamic Binary Transtatar.
+ Brief discuisshon of few DFT Doods.
« Decsdied discussian of QEMU (TCGL
- Inimgration of QENL with gems.

Binary Translation

b
- “Emulation of one Instruction set by anather
through translation of binary code.”
- Motivation: Running Legacy Code, Cost savings,

Server Virtualization, Cross ISA virtual Machines
Dynamic Binary Tronslation

{e.g. VMWare), Application Migration, Better Dymamic Binary Translator
Performance (2.g. Superoptimizer peephole), v v
- Tranglacian on the Ny {in Bme Memary and Profiling Tools (e.g. Valgrind) IS just.a host pracess which rues gu est spplication
-1t i sy ta do cormactiy,
- Simurar Urar Stabic Sinsey Tramlaticn. - Types
Evamples Hardviareriaitware

LY —

Saftviare: Rosetts dpmamic rarekatian byer —
IMacErRe, -3 Narcution Lapar-BGT an liznam
tanedl gputurms

Hardwisne: s toqr

Static Binory Tronslation

© Wbl o time,

+ Unuaty tast thar i shmmnatie

T S ——

+ Probiiemu: Code Dicovesy, Dynamic Lnking, Seif
Weditging Case

Exanple: A o2 of v des qarnes have bees statiel ly
iranvdaced hiserically

Binary Translation

- "Emulation of one Instruction set by another
through translation of binary code.”

- Motivation: Running Legacy Code, Cost savings,
Server Virtualization, Cross ISA virtual Machines
(e.g. VMWare), Application Migration, Better
Performance (e.g. Superoptimizer peephole),
Memory and Profiling Tools (e.g. Valgrind)

- Types

Static Binary Translation

- Ahead of time.

- Usually fast than its alternative

- Difficult to do Correctly

- Problems: Code Discovery, Dynamic Linking, Self
Modifying Code

- Example: A lot of video games have been statically
translated, historically.

Dynamic Binary Translation

- Translation on the fly (In time)

- It is easy to do correctly.

- Slower than Static Binary Translation.

- Examples: Hardware/Software

- Software: Rosetta dynamic translation layer

(MacOSx), IA-32 Execution Layer-DBT on Itanium
based systems.
- Hardware: x86->uops

Outline

- Introduction of Static and Dynamic BT (Done).

- Solution of problems of SBT by DBT.

- Structure of a Dynamic Binary Translator.

- Brief discussion of few DBT tools.

- Detailed discussion of QEMU (TCG).

- Integration of QEMU with gemb5.

- Note: Guest/Source/Foreign -> Host/Target/Native

Issues with Static Binary Translation

Code Discovery

- Data in Instruction Stream

- Compiler Optimizations

- Padding for Instruction Allignment.

+ Example; Switch Statement in C.

- Jump table in .text segment {contains
addresses not code)

- Mot a problem for Drynamic Binary
Tranalation

Code Discovery

Self Modifying Code and Dynamic
Linking

Indirect Branching

Run time Change of State

—
Self Modifying Code and i
Piaking ifying Code and Dynamic Indirect Branching

- Target Addresses unknown statically
PowerPC Target

= o way to handle if code is
modified at run time. *B6 Source

= Rum time loading of some
library , unloading and then Tmen] Nenn At asdiri6.el, 4
Ipading something else at the I ean wmed . 16

trtT v

sarne address (Plug in systerns) betr

o4 comlaling st ce o ddves, should be
transiated fo natie akdress
Befars timn

Ry time Change of State

+ Same instructions can change runtime
state and affect translation,

+ Example: setend on ARM used to switch
CPU endianness.

“Blatic Translation: never a complede solution far
Von-Meuman architectures where code and data
reside in same memory” [1]

A ynarmic Binary Translation”, Mark Probe

Code Discovery

- Data in Instruction Stream

- Compiler Optimizations

- Padding for Instruction Allignment.

- Example: Switch Statement in C.

- Jump table in .text segment (contains
addresses not code)

- Not a problem for Dynamic Binary
Translation

Self Modifying Code and Dynamic
Linking

- No way to handle if code is
modified at run time.

- Run time loading of some
library , unloading and then
loading something else at the
same address (Plug in systems)

Indirect Branching

- Target Addresses unknown statically

x86 Source PowerPC Target
movl %eax,4(%esp) addi r16,r11, 4
jmp %eax lwzx r4, r2, r1é
mtctr r4
betr

- r4 contains source address, should be
translated to native address
- not possible before time

Run time Change of State

- Some instructions can change runtime
state and affect translation.

- Example: setend on ARM used to switch
CPU endianness.

"Static Translation: never a complete solution for
Von-Neuman architectures where code and data
reside in same memory" [1]

[1]"Dynamic Binary Translation”, Mark Probst

Dynamic Binary Translator

It's just a host process wh
in its own address space

High Level Flaw in DET

- Laading guest appltation

- Imitialization (stack « regs|

+ App. code starts at start address of exe.

- SPCATPE {Look Up Tabie)

- Diigpateher checks if target address s
translated or nat (Lookup in Cache]

« jmg = jmp o dispatcher

Rispatchers Translated or et T

region
- Sclution: Contrel of guest’s memory

- Separate proceses

Systam Calls

Apglications

+ Gode Generated o System Calt
Jump tn SysCal Hadler

« Pass te Mative Kermel 7

+ .. Memory related syscalls

Ercfarmess and Address Space

+ Ditterence of Endiannes.

+ Selation L Byte Swapping before slore
and after lnsd [Expensivel.

- Schaticn ¥ Invert the whele sddness sucn

- Foign Applicationg sl ot
msddda with Trmnslators memary

Telated syscalis by Eransiates

+ Invberfaces Differ for Guest and Host

Fatching of Direct jumps

- ispateher can become i
bottieneck

- Fatch Direct Jumps

- Mewe Direetty b Nest
Bisck ¢ Fragment,

- “Translation Chaming*

Registers Mapping

« Trivial when native regs. ame greater in
mumber than foreign regs, -= Static
Mapping
Rcglsters n Mesee ¥ Loads and Stores
-

- Hykridl Appeaach

Tramslation Cache & Unitof Translation

+ Size of Cache 7
+ Use of some heusstic

+ Basic Blocis: Blocks with singhe entry and

et painits.
+ Ukt Interpreter and Teanslate anky
[e T S ——,

Salf Meditying Coda

+ How te lenew that alrandy transated o is
huangged i foraken apaliestion.

+ Sorne [5As have instroctions for this like
SPARC (Mol WA,

+ Wirite protect the translated pages and trap ts
slgral handler wherever there isan attempt
b write.

+ Trralitlate Gensrated Code abl perform
Ing

Unehain

ich runs guest application

Intermediate Representation

« Classic Compilers strategy [Botter
Optimization]

+ Allows Esclation of front and back
ens.

- Bedter Portability

wediaty Reg

High Level Flow in DBT

- Loading guest application

- Initialization (stack + regs)

- App. code starts at start address of exe.

- SPC->TPC (Look Up Table)

- Dispatcher checks if target address is
translated or not (Lookup in Cache)

- jmp -> jmp to dispatcher

Dispatcher)w=p/ Translated or Not ?

\ native code gen.

System Calls

- Interfaces Differ for Guest and Host
Applications

- Code Generated for System Call:
Jump to SysCall Hadler

- Pass to Native Kernel ?

- e.g. Memory related syscalls

Patching of Direct Jumps

- Dispatcher can become a
bottleneck

- Patch Direct Jumps

- Move Directly to Next
Block / Fragment.

- "Translation Chaining"

Translation Cache & Unit of Translation

. Size of Cache ?
- Use of some heuristic

- Basic Blocks: Blocks with single entry and
exit points.

- Use Interpreter and Translate only
frequently executed pices of code.

Intermediate Representation

. Classic Compilers strategy (Better
Optimization)

- Allows isolation of front and back
ends.

- Better Portability

Intermediate Rep.
guest code host code

Endianness and Address Space

- Difference of Endiannes.

- Solution_1: Byte Swapping before store
and after load (Expensive).

- Solution_2: Invert the whole address space

- Foreign Applications should not
meddle with Translator's memory
region.

- Solution: Control of guest's memory
related syscalls by translator.

- Separate processes

Registers Mapping

- Trivial when native regs. are greater in
number than foreign regs. -> Static
Mapping.

- Registers in Memory: Loads and Stores
become a bottleneck

- Hybrid Approach

Self Modifying Code

- How to know that already translated code is
changed in foreign application.

- Some ISAs have instructions for this like
SPARC (not X86).

- Write protect the translated pages and trap to
signal handler whenever there is an attempt
to write.

- Invalidate Generated Code and perform
Unchaining.

Dynamic Binary Tranlation Tools

BinTrans

Transdation: Seq. Hocks
ending at pamps

Cancurrently ran inberpreter and
Fal

Deperdling oo

fastBT

HDTrans

General purpese dynamic tramslation
system

SUpports: IASEA3E

Resembles fastBT In structure

Requires 3 kow leved Instruction table from
user.

Overhead : approx. 35-30% average [SPEC
INT 2000)

DrynamcRIO

Dymamic Instrumentation system
Supports IA3Z and AMDS4
{Wimdows and Linux)

Trarslator extracts and opeimizes
traces fer hot regiens

Malnzains baslc beck cache +
trace cache

BinTrans

- Supports: PowerPc to Alpha, 1386 to
PowerPc and 1386 to Alpha

- Supports user level applications
only.

- Unit of Translation: Seq. blocks
ending at jumps

- Concurrently run interpreter and
native generated code, check states.
- Depending on foreign-native pair
different reg. allocation and byte
ordering strategies are applied.

fastBT

- Generator for DBTs

- Only User Space support

- 1A32->1a32

» 0-10% overhead (some exceptions)

- Requires a high level instruction table
from user

HDTrans

- General purpose dynamic translation
system.

- Supports: iIA32->i1A32

- Resembles fastBT in structure

- Requires a low level instruction table from
user.

- Overhead : approx. 25-30% average (SPEC
INT 2000)

DynamoRIO

- Dynamic Instrumentation system
- Supports IA32 and AMD64
(Windows and Linux)

- Translator extracts and optimizes
traces for hot regions

- Maintains basic block cache +
trace cache

QEMU

- System Mode Emulation

- User Mode Emulation

- Virtualization, Cross Compilation development
environments

- Supported OS: Linux, Windows, MacOSx

- Supported ISAs: x86, ARM, MIPS, SPARC, ALPHA

- CPU Emulator (TCG code generator)

- Emulated Devices

- User Interface

TCG

- Target Instructions-> Machine
Independent uops (small pieces of C
code)

- Initially Dyngen was used with gcc.

- TCG introduced to remove gcc

dependence.
TARGET
:,’ ~ G E g ‘\‘I
) o= A ﬂ |
QEI\I[T 0" = g TCG = e P
B3 28| !
\ EF c /
. _ - ¥ _#
HOST

Ref: "Ch7-QEMU Detailed Study"http://lists.gnu.org/archive/html/qemu-
devel/2011-04/pdfhC5rVdz7U8.pdf

Prologue and Epilogue

- Prologue:lnitializes processor for
generated host code execution and
jumps to the code block.

- Epilogue: Restores normal state and
returns to the main loop.

PRE - GENERATED CODE CODE / TRANSLATION CACHE

Ref: "Ch7-QEMU Detailed Study"http://lists.gnu.org/archive/html/qemu-devel/2011-04/
pdfhC5rVdz7U8.pdf

Direct Block Chaining

When a block returns to the main loop and the next block is
known and already translated QEMU can patch the original block
to jump directly into the next block instead of jumping to the
epilogue.

PRE - GENERATED CODE CODE / TRANSLATION CACHE

____________________ . (c) (R |

Ref: "Ch7-QEMU Detailed Study"http://lists.gnu.org/archive/html/gemu-devel/2011-04/
pdfhC5rVdz7U8.pdf

- Asynchronous Interrupts

- Self Modifying Code: Instruction
cache invalidation

- Fixed Register Allocation

- Lazy Condition Code Evaluation
- SoftMMU

Integration of Gem5 and QEMU

- Gem5

- Resources: Output Assembly log from QEMU,
Gem5

- Idea1: Reconstruct Host Binary

- Idea2: Use Trace Driven Approach

Rucanstructing Host Bina ry Trace Driven Approach
= TraceGen Module
Use guest Binary 1 genorats a - Uses Gangle Frotohuf farmat
birary far hot. - 5ize of traces
- A P Lot pection W
r——— - Compatibility of traces
- Crows 154 ranslatian crupMa | Tramos
1 rallicsen
s Stave Part

Reconstructing Host Binary

- Use guest binary to generate a
binary for host.

- A new text section will
introduce incompatibility.

- Cross ISA translation

Trace Driven Approach

- TraceGen Module

- Uses Google Protobuf format
- Size of traces

- Compatibility of traces

CPU,DMA TrafficGen

v

Bus Slave Port

Binary Translation

Issues with Static Binary Translation
ude Lincovery

Salf Wikt Cate srd Byrams.
urking

ity S P

Integration of Gems and QEMU i e s ity

« Gems . -

« Beszurcmr: Cutzul Axvmmily log frem OEM, = - N
Bemb

« Tdeat: heconstruct Hos Bnary - B

cand- Use Trace Drovan Apfreach

- =] [

—
i rsnge el iyl e bt Dynamic Binary Tranfation Tools
+ Structure of 4 Oynamic Binary Transtatar.
+ Brief discuisshon of few DFT Doods.
« Decsdied discussian of QEMU (TCGL
- Inimgration of QENL with gems.

Binary Translation

b
- “Emulation of one Instruction set by anather
through translation of binary code.”
- Motivation: Running Legacy Code, Cost savings,

Server Virtualization, Cross ISA virtual Machines
Dynamic Binary Tronslation

{e.g. VMWare), Application Migration, Better Dymamic Binary Translator
Performance (2.g. Superoptimizer peephole), v v
- Tranglacian on the Ny {in Bme Memary and Profiling Tools (e.g. Valgrind) IS just.a host pracess which rues gu est spplication
-1t i sy ta do cormactiy,
- Simurar Urar Stabic Sinsey Tramlaticn. - Types
Evamples Hardviareriaitware

LY —

Saftviare: Rosetts dpmamic rarekatian byer —
IMacErRe, -3 Narcution Lapar-BGT an liznam
tanedl gputurms

Hardwisne: s toqr

Static Binory Tronslation

© Wbl o time,

+ Unuaty tast thar i shmmnatie

T S ——

+ Probiiemu: Code Dicovesy, Dynamic Lnking, Seif
Weditging Case

Exanple: A o2 of v des qarnes have bees statiel ly
iranvdaced hiserically

