

1 Lowe-Power et al., “The gem5 simulator: Version 20.0+. arXiv preprint arXiv:2007.03152 (2020).
2 Lee et al., “Keystone: An open framework for architecting trusted execution environments”, in EuroSys 2020, pp. 1—16.
3 Karandikar et al., “Firesim: Fpga-accelerated cycle-exact scale-out system simulation in the public cloud.,” in ISCA, 2018, pp. 29—42.
4 https://github.com/riscv/riscv-pk
5 https://github.com/riscv/opensbi

Simulating Trusted Execution Environments in gem5

Ayaz Akram, Venkatesh Akella, Sean Peisert, and Jason Lowe-Power

University of California Davis, and Lawrence Berkeley National Lab

Cycle-level architectural simulation of Trusted Execution Environments (TEEs) can enable extensive design space exploration

of these secure architectures. The existing architectural simulators do not provide any support for such studies. In this work, we

focus on gem51, and a RISC-V based open-source TEE, Keystone2, to open new avenues for designing and studying TEEs. The

architectural simulations are useful to iterate on high-level architectural tradeoffs before focusing on an RTL of the chosen design.

With this simulation support, it is easy to pick a design and analyze how it applies to different architectures.

gem5 is one of the most popular computer architecture research simulation frameworks with its multitude of hardware models

and rich support for full system simulations. Currently, the RISC-V ecosystem provides support to perform functional/RTL level

simulation of RISCV-TEEs using QEMU or FireSim3, however, there is no tool/simulator available to do high-level architec-

tural/microarchitectural studies of RISC-V TEEs at a cycle level (for an early design space exploration). Researchers have to rely

on analytical modeling for their studies involving Keystone.

Keystone is proposed as a customizable and modular TEE, which allows fine-grained TCB (trusted compute base) configuration.

Keystone relies on a RISC-V feature, PMP (physical memory protection), to provide memory protection. Recently gem5’s full

system support has been extended and M-mode (RISC-V's most privileged execution mode) support has been improved which

allows (unmodified) RISC-V Linux kernel booting on gem5. We further extended this support to add RISC-V PMP feature in

gem5 which enabled running Keystone’s Security Monitor (M-mode software which enforces all security guarantees) on gem5.

Keystone’s SM is shipped as a part of both BBL4, and OpenSBI5, bootloaders. We tested both of these bootloaders with SM on

gem5. We further set-up all Keystone components for simulation on gem5 and performed different tests.

Evaluation: We rely on the following actions for the functional validation of Keystone implementation in gem5: 1) We

performed physical memory access checks using Linux utilities to test working of PMP, which passes successfully. 2) We suc-

cessfully ran primary Keystone tests, which apart from performing some basic functionality tests, check if an enclave access is

violated or not. 3) Finally, we tested workloads used in Keystone’s EuroSys paper which also work successfully.

Apart from functional validation, we are concerned about the performance validation of Keystone’s gem5 implementation as

well. Towards this goal, we performed some experiments and collected performance numbers for Keystone benchmarks on gem5

and compared them with the performance numbers published in the original Keystone’s paper at EuroSys. We show that the

Keystone simulations on gem5 exhibit similar performance numbers/trends as in the EuroSys paper. Figure 1 shows a comparison

of the slowdown experienced from the trusted execution on two gem5 CPU models, and the slowdown numbers taken from

Keystone’s EuroSys paper.

Figure 1. Comparison of Keystone slowdown on gem5 and EuroSys paper (native execution). This slowdown includes enclave

creation and management time as well.

In future, this work will allow us to do large design space exploration with different microarchitectures (in order, out of order

cores, small caches, large caches, one core, many cores). Microarchitecture can impact both performance and security. This work

can enable deep introspection into microarchitectural behavior from both performance and security’s perspective. Moreover, we

can easily study high-level changes to the secure hardware mechanisms (e.g., adding hardware encryption and integrity support).

