A Review of Memory Disambiguation

Ayaz Akram
Department of ECE
Western Michigan University (WMU)
Email: ayaz.akram@wmich.edu

Abstract—Memory disambiguation techniques are used to
resolve aliasing of load and stores to the same address. As a
result, better scheduling decisions can be made by processor or
compiler, resulting in higher single thread performance. Various
such strategies have been proposed by researchers till date.
This short paper, tries to review some of those strategies in
chronological order.

I. INTRODUCTION

Out of order pipelines dynamically reschedule instructions
to execute independent instructions while dependent instruc-
tions are still waiting to get their source operands. This
re-ordering of instructions raises a new problem associated
to memory operations. Processor cannot figure out any de-
pendence of a load operation on a store operation unless
addresses of those instructions are calulated. As a result
load instructions cannot be scheduled if any store instruction
yet has to commit. This problem also known as “unknown
address problem” [[1] can severely hurt performance. Memory
disambiguation refers to determining if loads and stores
access the same address. Applying memory disambiguation
techniques and letting loads execute before store instruc-
tions if possible, can boost up performance. For example,
40% performance improvement was seen on Intel Core
microarchitecure [2] by applying memory disambiguation
techngiques and allowing loads to execute ahead of previous
stores.

Early techniques to resolve this problem were non-
speculative. Such techniques used to delay load instructions
until younger store instructions did not get executed (i.e their
data and address become known). One of these techniques
was proposed as part of work done to create a new high
performance micro-architecture by Yale et al [[L]. They pro-
posed a solution for the unknown address problem using
“dependency matrices”. These dependency matrices are used
to show relationship that exists between operations. Each
store instruction with unknown adress makes all entries in
a particular column (assume i) of the matrix equal to 1.
Load instructions get a unique entry in a row. No load
instruction can proceed if first k (k is equal to row number)
elements of row are equal to 1. These entries are made 0
when address of particular store instruction becomes known.
This technique can be costly to implement in hardware. It

also cannot fully exploit the instruction level parallelsim
(ILP) available in the program. Since then, various specula-
tive memory disambiguation techniques have been proposed
which can exploit more available ILP as compared to non-
speculative techniques. In this short paper we will review
five speculative memory disambiguation techniques. First
three techniques are purely hardware bases, fourth one is
purely software based and fifth discussed technique involves
hardware software cooperation. Next sections discuss these
techniques one by one.

II. ADDRESS RESOLUTION BUFFER

Franklin and Sohi [3] proposed one of the first speculative
memory disambiguation solutions. They observed that non-
speculative techniques like that in [1]] and Tomasulo machine
[4] require wide associative searches (meaning that they
are complex in hardware) and they are not very flexible in
providing reordering of references. They proposed address
resolution buffer (ARB) to support speculative mmeory op-
erations. ARB supports laod speculation and load forwarding.
ARB contains many banks and each of them can contain a
fixed number of rows. Each row corresponds to an address
on which a memory operation is pending in the current
instruction window. Due to banking of this structure more
than one disambiguation requests can be dispatched per cycle.
The scope of associative research is reduced as well due
to banking, because an address needs to be compared with
addresses of the matching bank only. Each row of any bank
contains a number of stages as shown in Figure 2] where each
stage corresponds to a sequence number (temporal sequence
number of instruction). When a load instruction executes, its
load address is used to determine ARB bank. Then within
that ARB bank, an associative search is performed to figure
out if an earlier store is executed to the same address in
the active window. If an earlier store exists in the bank,
associated data value (from closest store) is forwarded to
the load. In case no store is found, load request is sent to the
data cache speculatively. If no row exists for address of a load
or store instruction a new row is created. If the address for
store instruction exists in a bank, particular row is searched
to see if there is any younger load that has executed and no
other store instruction has executed on the same address yet.
If this is the case, recovery is performed by squashing all

intstructions after this store. Tail pointer which determines
the boundary of active window as shown in Figure [2]is also
restored.

In this technique it is assumed that load does not depend
on an older stores and if an older store entry is not executed
yet, load is always speculatively sent to data cache. This
assumption, instead of learning from past behaviour can
result in lower performance. As a result misprediction rate
of the address resolution buffer for some of the benchmarks
can be high. In [3] Franklin and Sohi have shown that ARB
performs better than dependency matrix and is less expensive
in hardware cost due to reduced associative search.

III. MEMORY RENAMING

Memory renaming was proposed by Tyson and Austin
[S]. They used register communication techniques to im-
prove the performance of memory traffic. They showed an
overall improvement of 14% in execution time after over
the base case (no speculation). The name memory renaming
is derived from the similar technique of register renaming.
In memory renaming, instead of identifying the address of
store instruction used for transmission of value, particular
store instruction is identified thta writes the data value. To
support this technique a memory dependence predictor and a
register value file (an extension to normal register file) are in-
corporated into pipeline. Memory dependence predictor (also
termed as load store cache) which uses program counter (PC)
of load and store instructions is used to indicate dependence
between load and store instructions. The pair that is predicted
to communicate is bound to same physical register in value
file. Thorugh their experiemnts Tyson and Austin found out
that for SPEC92 benchmakrs, producer locality (reuse of
same source / producer instruction) ranges from 43% to 75%
for SPEC integer and floating point benchmarks. That is why
load store dependence pairings are used to determine when
speculation would be beneficial.

While at decode stage, load or store insturction looks in
load store cache (memory dependence predictor) to get value
file index which is then used to find entry in value register
file. If the entry is found: it is checked that if the value can
be used from value file, based on the status of a confidence
counter or if their is an in-flight store that can update register
file value. If that is the case it returns its entry number
from reorder buffer. Otherwise, the last existing value from
register file is returned. If entry does not exist in value file,
a new entry in cache is created and it is associated with a
new entry in value file. Later if the value is found to be
correctly predicted i.e. the value used is validated against
the correct value, load is commited. Otherwise, recovery
can be initiated. Two recovery mechanisms are presented
by the authors: squash recovery and re-execution recovery.
In squash recovery, all instructions including and after the
mis-predicted load are squashed and execution restarts from
that point. In case of re-execution recovery only dependent

instructions are squashed leaving the independent ones. Ob-
viously this is a high performance recovery mechanism but
it is more costly in hardware.

They have used SimpleScalar simulator for simulation
studies. An average of 62 % of memory dependencies are
predicted correctly by the predictor for all programs. The
experiments performed that use confidence mechanism show
at least 69.22 % confidence for all of them. Performance
improvements of more than 16 % are shown overall. This
mechanism can only detect load store dependences within
the instruction window. Since most load store instructions as
shown in [[6] are distant, this can be a limitation for higher
performance [7]].

IV. STORE SET PREDICTOR

Store set predictor [8] is one of the relatively simple
proposed approaches for memory disambiguation. A store set
is maintained for any specific load. This store set contains all
the stores on which this load has ever depended. Whenever a
load executes before a store and a memory order violation is
caused, the store instruction is added to the store set. Later
when the load instruction executes again, store set is used
to predict what store instructions this load depends on. Same
store can exist in multiple store sets, since multiple loads can
depend on same store. Considering this, authors proposed
a store-set merging predictor implementation to redeuce
hardware cost. This predictor contains two tables: store set ID
table (SSIT) for store-load association connections and last
fetched store table (LFST), which keeps track of the store
currently in the instruction window for a particular ID. On
occurrence of a memory violation, if load or store exists in
SSIT, and only one of them has an id , the other is given the
same id. If none of them has an id, new id is allocated and
written into SSIT. To write this new id, SSIT is indexed using
program counters of both load and store isntructions. If both
load and store have id’s in the SSIT, smaller id is assigned
to both of them. As a result, store sets of different loads get
merged. When a load is fetched, it accesses the SSIT and
gets store set id. Based on this id, LFST is accessed and
sequence number of the most recently fetched store in its
store set. Load cannot be scheduled bfore this store.

Chrysos and Emer [8]] simulated a 8 wide superscalar
Alpha machine and used SPEC95 benchmarks for interval of
100 million instructions. To evaluate the perforamnce, infinite
configuration (each store set can have as many stores as load
depdends on and one store can exist in more than one store
set) is used. A 2 bit saturating counter is also incorporated to
reduce false dependencies. This predictor is shown to exhibit
nearly optimal performance in large instruction window,
pipelines when compared to perfect memory dependence
predictor.

) r—— AN S ——
= A oy R LY U
[T T ; \
vyl R RN , 1
o ' P ' |
’,f /.r‘_. , ST ‘.I_, R \\
| oo . P | Lo P |
L2000 ;o R 1 10\ L L
o T = i i]
Be e L L — el N
Addresy L ,S altie o Fa /o ".]‘7 . N
2000 _| T L
! | : \ | : ' : “ . | : ' |
Bank O r i] 1 T i i
! L R i | |
[‘ . ! | ‘
i ' Vo :
L f . i
1 N ,
f . —-
Stage O Stage | Stage 2 Stage 3 Stage 4 i Stage 5
i |
| Tail

| Head
| _

Fig. 1. Address Resolution Buffer

Load/Store PC

Active ARB Window

Store Set 1D Table
(SSIT)

——— »

Last Fetched Store Table
(LFST)

Index

Store Inum

S5ID

Loads and stores index into the SSIT to get their store set identifiers, which are used to access and update
the LFST. The store inums that are found in the LFST indicate the memory dependence prediction.

Fig. 2. Store Set Memory Dependence Prediction [§]

V. PROBABILISTIC MEMORY DISAMBIGUATION

Ju et al [9] proposed a probabilistic memory
disambiguation (PMD) framework to statically find out
memory aliasing and make spculation decisions. Authors
have focused on memory references from arrays. Giving
examples of different code segments authors have made a
case that data speculative instructions are profitable only if
there is a high probability that original load instruction will
not alias with the store instruction being speculated across.
An expression of aliasing probability is defined in the paper.
Intuitively, the denominator of the expression is the number
of times that the load is executed in the iteration space and
numerator is the number of times load and store alias to
the same address. Numerator is weighted by the probability

that the store instruction will execute. Based on the aliasing
probabilty following cost model can be used by the compiler
to determine if the data specualtion will be profitable or not.

(Lo) should be greater than (Ls + p * (Or + Lc))

Here Lo is the cycle length of schedule in original
code. Ls is cycle length of code in data speculatin version,
p is the aliasing probability. Or is the overhead to call
recovery code and Lc is the cycle length for schedule of
recovery code. If the above mentioned expression holds
valid, data speculation can result in performance gain. Since,
most of these factors are compile time constant, compiler
can evaluate above expression and make decisions about

speculation statically. A set of heuristics are also developed
after studying some common cases to avoid expensive
probability computations.

Finally some experiments are performed by authors by
modelling HPL PlayDoh VLIW machine. Certain code frag-
ments are chosen from real numeric applications, which are
considered to be candidates of data speculation. Results show
that for most of the cases aliasing probability is proportional
to reciprocal of N (number of loop iterations of code). Cost
of recovery code is also high for smaller N, therefore data
speculationf for small N results in worse performance than
the base version (with no speculation). The performance of
speculation version improves with increasing N. Speed up
of 1.1 to 1.2 is observed when data speculatin becomes
profitable. The threshold value of N where data speculation
becomes profitable varies. Finally, significance of guiding
data speculation with a cost model like PMD framework to
maximize program performance (regardless of value of N)is
established.

Thoough this static technique looks promising, but it
suffers from the same limitations of any static solution
in computer architecture research. If underlying pipeline
parameters change, recompilation and establishment of new
probabilistic model will be needed.

VI. FEEDBACK-DIRECTED MEMORY DISAMBIGUATION

Fang et al [10] proposed a feedback directed memory
disambiguation technique. The proposed idea is to gener-
ate a representative store distance (store distance is num-
ber of stores between a load and a store which access
the same address)for each load instruction and then apply
compiler/micro-architecture cooperative scheme to perform
run-time load speculation. This idea achieves a performance
very close to perfect memory disambiguation. If compared
to store set technique this idea performs better for small
predictor size but gives comparable performance with 16-
K entry store set implimentation. Since this technique is a
cooperative hardware/software solution it gives the best of
both worlds i.e. it does not require a lot of space on chip
and it is not limited to array-based codes as well.

Fang et al [10] observed that on average, 82% of the load
instructions in SPEC 2000 benchmarks have just one store
distance. For other instructions, which can have multiple store
distances (result from change in dependences), a summary
distance is chosen by compiler based on distance distribution
of each instruction. To calulate store distance distribution,
for load instruction program is run witha small input for
profiling. A global store instruction counter is maintained,
to record store cycle. Each store is inserted into a hash table
alongwith its current store cycle. Later when a load is fetched
it searches the hash table and compares the current store
cycle against the previous store cycle with the same address.
Store distance can be calculated based on this comparison.
For out of order pipelines, if store distance is greater than a

threshold termed as ‘speculating distance’ (for example, ROB
size in out of order pipelines), store distance is set equal to
speculating distance. In this case, load instrucion is not likely
to depdend on any store instruction in current pipeline. A
store distance is called ‘dominant distance’ if it accounts for
more than 95 % of total accesses for this instruction. So,
initially speculating distance is set as summary store distance,
then if a dominant distance exists for load , summary store
distance is set equal to it. Otherwise minimum distance is
chosen as summary store distance. This method assumes
that small store distances remain constant across different
program inputs. On the other hand if store distance is greater
than specualting distance, load instructions are likely to
be speculated without any mis-specualtion. So, this scheme
assumes constant store distances across different inputs.

Supposing that s is the speculating distance, log(s)+1 bits
of the offset field of a load instruction are used for encoding
of store distance. After encoding of store distance in load
instruction, micro-architecture just has to identify store on
which this load depends. A store table is kept for this purpose.
Every store instruction in the pipeline has an entry in store
table with a unique id. When a load instruction is decoded,
the encoded store distance is used to index into the store table
and get an id of related store instruction. This id is then used
in ROB to make speculation decisions.

The results in [10] show that 99.1% of load instructions
in CFP2000 benchmakrs and 94.9% of load instructions in
CINT2000 benchmarks have constant store distance irrespec-
tive of test and reference inputs. Moreover, it is also shown
that on floating point benchmarks store distance approach
achieves a harmonic mean improvement of 9% over Store set
technique with 1K entries and achieves a 4% performance
improvement over store set technique with 4K entries. For
integer benchmarks a harmonic mean improvement of 8%
and 4.5% are achieved over store set technique with 1K and
4K entries respectively. A subset of SPEC 2000 benchmarks
is used on FAST simualtor using MIPS ISA, to evaluate
perormance of this idea. Though results seem convincing,
but the assumption that store distance remains same across
workloads seems naive.

VII. CONCLUSION

Memory disambiguation strategies reviewd in this paper
are diverse in their design. Speculative memory disambigua-
tion techniques always provide more leverage to achieve
better performance. Depending on the design hardware cost
of these techniques can vary as well. For example while
address resolution buffer and memory renaming require a
lot of hardware, store set technique’s simplicity spares some
of hardware cost. Purely software strategies like PMD do
not require any hardware cost but they can suffer from
serious incaccuracies due to varying workloads of these days.
Techniques which uses both hardware and software solutions

usually have better opportunity for optimization. For exam-

ple,

feedback directed memory disambiguation discussed in

this paper requires less hardware than store set technique
and performs better in most of the cases. For good analaysis
of different memory disambiguation architectures one should
refer to [L1], [7]]

[1]

[2]
[3]

[4]

[5]

[7]
[8]

[9]

[10]

(11]

REFERENCES

Y. N. Patt, S. W. Melvin, W.-m. Hwu, and M. C. Shebanow, “Critical
issues regarding hps, a high performance microarchitecture,” ACM
SIGMICRO Newsletter, vol. 16, no. 4, pp. 109-116, 1985.

M. Franklin and G. S. Sohi, “Arb: A hardware mechanism for dynamic
reordering of memory references,” Computers, IEEE Transactions on,
vol. 45, no. 5, pp. 552-571, 1996.

D. Anderson, F. Sparacio, and R. M. Tomasulo, “The ibm system/360
model 91: Machine philosophy and instruction-handling,” IBM Journal
of Research and Development, vol. 11, no. 1, pp. 8-24, 1967.

G. S. Tyson and T. M. Austin, “Improving the accuracy and perfor-
mance of memory communication through renaming,” in Microarchi-
tecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International
Symposium on, pp. 218-227, IEEE, 1997.

A. Moshovos and G. S. Sohi, “Streamlining inter-operation memory
communication via data dependence prediction,” in Proceedings of the
30th annual ACM/IEEE international symposium on Microarchitecture,
pp. 235-245, IEEE Computer Society, 1997.

“Literature survey.” |https://users.ece.cmu.edu/~omutlu/pub/onur_ss_.
lit_survey_2001.pdf.

G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in ACM SIGARCH Computer Architecture News, vol. 26,
pp. 142-153, IEEE Computer Society, 1998.

R. D.-c. Ju, J.-F. Collard, and K. Oukbir, “Probabilistic memory dis-
ambiguation and its application to data speculation,” ACM SIGARCH
Computer Architecture News, vol. 27, no. 1, pp. 27-30, 1999.

C. Fang, S. Carr, S. Onder, and Z. Wang, “Feedback-directed memory
disambiguation through store distance analysis,” in Proceedings of the
20th annual international conference on Supercomputing, pp. 278-287,
ACM, 2006.

B. Calder and G. Reinman, “A comparative survey of load speculation
architectures,” Journal of Instruction-Level Parallelism, vol. 2, pp. 1—
39, 2000.

https://users.ece.cmu.edu/~omutlu/pub/onur_ss_lit_survey_2001.pdf
https://users.ece.cmu.edu/~omutlu/pub/onur_ss_lit_survey_2001.pdf

	Introduction
	Address Resolution Buffer
	Memory Renaming
	Store Set Predictor
	Probabilistic Memory Disambiguation
	Feedback-directed Memory Disambiguation
	Conclusion
	References

