
A Comparative Study of ISA Multimedia Extensions for HPC
Ayaz Akram, Sajjad Rahnama

Project Report ECS-201C, Spring 2019
{yazakram,sajjad.rahnama}@ucdavis.edu

ABSTRACT
Exploiting data parallelism with SIMD instructions can improve the
performance of applications with data level parallelsim. In this work,
we compare and analyze the effects of using different SIMD exten-
sionsons on some HPC workloads. We try to figure out the reasons
for the performance differences across different SIMD extensions.

1 INTRODUCTION
Instruction set architecture (ISA) defines the boundary between the
hardware and software layers of a computer system [13]. Differ-
ent processor vendors define their own instruction set architectures
to build processors based on them e.g. Intel/AMD’s x86, ARM’s
ARMv8/ARMv7, and DEC’s Alpha. Different instruction set exten-
sions are added to the ISAs over time considering the importance
of target applications. A major addition to all the ISAs is the inclu-
sion of multimedia extensions to accelerate execution of multimedia
workloads. These extensions rely on the fact that the performance
of most of the multimedia applications can be improved by process-
ing distinct data elements in parallel i.e. the use of SIMD (Single
Instruction, Multiple Data) instructions. Some recent examples of
multimedia extensions are Intel’s SSE, AVX extensions [1, 2] and
ARM’s NEON extension [3]. Such extensions can be used to accel-
erate applications from other domains like HPC (high performance
computing) as well. This works performs a comparative study of
these SIMD extensions and compare their performance on some
high performance computing benchmarks.

The specific questions we try to answer in this study include:

• What performance differences do fundamentally exist across
these multimedia extensions?

• How do these extensions compare in terms of programmabil-
ity and usability?

• How does the compiler generated (auto-vectorization) SIMD
code compare to manually vectorized code?

In the past decade, SIMD execution has seen a dramatic increase
in the set of applications using it, which has motivated big improve-
ments in hardware support in mainstream microprocessors. In this
article, we investigate two famous architectures X86 and ARM. In-
tels X86 has SSE, FMA and AVX and variations of these three which
has been developed over past years. For the ARM architecture, there
are two extensions. First, NEON which is advanced SIMD extension
for the ARM architecture and second, the Scalable Vector Exten-
sion(SVE) which allows implementation choices for vector lengths
that scale from 128to 2048 bits.

2 RELATED WORK
There are a few old related works that survey different multime-
dia extensions [12, 17]. Lee [12] provides an overview of various
multimedia extensions of different ISAs for general purpose proces-
sors used to accelerate media processing (e.g. MAX, MMX, VIS).

Similarly, Slingerland and Smith [17] surveyed existing multimedia
instruction sets of the time and examined the mapping of their func-
tionality to a set of computationally important kernels. These studies
are old and focus on the qualitative comparison of the multimedia
extensions.

Mitra et al. compare the SSE and NEON SIMD performance on
the Intel and the ARM processors within the context of the open
CV image processing library[14]. They also showed that using hand-
optimized SIMD intrinsic functions rather than GCC compiler auto-
vectorization for ARM and Intel platforms respectively will cause
speed-ups of 1.05-13.88 and 1.34-5.54. Their main argument is that
with hand optimization the code for running with SIMD extensions
we will get better performance and utilization of these extensions
rather than using auto-vectorization by the compiler. Hoffman et
al [11] investigated the efficiency of different SIMD extensions for
medical imaging applications and found out that GPU implemen-
tations perform better than SIMD implementations for the given
workload.

Recently, Patterson and Waterman performed a comparison of
RISC-V vector code to SIMD extensions of ARM, x86 and MIPS
[15]. They argued that vector architectures are more efficient to
exploit data level parallelism in comparison to SIMD architectures

There also exist many studies [4–6, 9, 16] on general purpose
ISAs which do not specifically focus on SIMD extensions.

3 METHODOLGY

Table 1: NAS Parallel Benchmarks

Benchmark Description
BT Block Tri Diagonal Solver
SP Scalar Penta Diagonal Solver
LU Lower-upper Gauss-Seidel Solver
IS Integer sorting
EP Embarrasingly Parallel
CG Conjugate Gradient
MG Multi-Grid Method
FT Fourier Transform

Table 2: PARSEC Benchmarks

Benchmark Application Domain
Blackscholes Financial Analysis
Swaptions Financial Analysis
Fluidanimate Animation
Vips Media Processing
Streamcluster Data Mining



For this study, we made use of NAS parallel benchmarks [7] (NPB
3.3.1), PARSEC benchmark suite [8] and a vectorized version of
PARSEC named ParVec [10]. NAS parallel benchmarks are used to
evaluate the performance of parallel supercomputers. NAS parallel
benchmarks contain five kernels and three pseudo applications. A
brief description of these workloads is given in Table 1. Though,
NAS parallel benchmarks have multiples classes (the workload size
varies), in this work, we only use the class B workloads.

PARSEC [8] is another benchmark suite for parallel computers
which targets differernt domains including HPC. A short description
of the PARSEC workloads used in our study is shown in the Table
2. ParVec [10] includes modifications in PARSEC to make use of
SIMD extensions of modern processors.

We used auto-vectorization feature of gcc to compile these bench-
marks with different extensions (apart from ParVec). The x86 ma-
chine used in our experiments is an Intel Core i7-8700 (32GB)
machine, while the ARM machine is based on AWS Graviton pro-
cessor (8 GB Memory). To collect some performance statistics of
the executed workloads, we make use of perf tool on both machines.

4 RESULTS
Next, we present results of our experiments. Figure 1 shows the
execution cycles for class B of NAS parallel benchmarks, when
the vectorization is enabled (with AVX and SSE extensions sepa-
rately) and disabled on an x86 machine. The execution cycles are
normalized to the AVX enabled case for each workload. As it is clear
from the figure, the differences in execution cycles can vary from
almost non-existent (as in is.x) to 1.8x (as in mg.x). Importantly, the
performance improvements of vectorization are quite far from the
theoretical speed-ups possible. Secondly, the performance difference
between two vector extensions (AVX and SSE) with different length
vector registers is not significant. No benchmark preferred smaller
vector length.

mg.x has the highest improvement in performance as the bench-
mark contains a lot of contiguous memory operations in the in-
nermost loop of the kernel. The benchmak has highly structured
long distance communication. cg.x on the other hand is quite ir-
regular with many indirect memory accesses, thus not exhibiting
significant performance improvements. is.x has very small impact
of auto-vectorization, the main reason being that the kernel function
lack loops which can be vectorized and it has many indirect memory
accesses. For bt.x, lu.x and sp.x, since the innermost loops are iter-
ated for a limited number of time and they involve non-contiguous
memory operations, the vectorization improvements are limited.

In order to make sure, that there are no DVFS effects involved in
the cycle count comparison, we looked at the absolute time compari-
son shown in Figure 2, which shows the same trend with the same
differences.

Figure 3 shows a comparison of the dynamic number of instruc-
tions for each benchmark among vectorized and scalar versions. The
number of instructions are normalized to the instructions with AVX
enabled. On average, AVX resulted into 27% less instructions com-
pared to the non-vectorized code. It is expected that this decrease in
the number of instructions will improve the energy efficiency of the
system.

Total number of data cache loads is reduced to as much as 100%
(for ft.x), when AVX is used compared to the scalar version of code.
The reason behind this decrease in the number of data cache loads is
that the a single vector load can load more data compared to a scalar
one. However, this difference in the number of data cache loads does
not affect the number of data cache misses as shown in the Figure 5,
where the L1-Dcache misses stay same across all cases.

Figure 6 shows a comparison of last level cache misses across
the workloads. In contrast to L1-dcache misses, the number of last
level cache (LLC) misses vary across the vector and scalar version
of the benchmarks. In almost all of the cases (except ep.x), the
number of LLC misses are either same or high for vectorized code.
One possible explanation of the high number of LLC misses is the
increase in memory traffic that is caused by vector operations. It
is possible that, when vector operations bring in data to LLC the
amount of useful data that is kicked out is higher than the case of
scalar versions of the benchmarks.

Figure 7 shows the number of branch mispredictions for the
studied workloads. Like, LLC misses the impact of vectorization
varies across the workloads.

Figure 8 shows a comparison of the execution time of class B
workloads (NAS parallel) on the ARM machine, with vectorization
enabled/disabled. Interestingly, we did not observe any significant
difference here. We spent quite an amount of time to figure out if
even the NEON instructions are used by the benchmarks. We were
able to make sure that the machine supports SIMD extensions, and
that the compiler generated few SIMD operations withe autovec-
torization enabled. But, the overall impact of vectorization on the
performance is too little (mainly it seems like only small portion of
the benchmarks is vectorized with auto-vectorization).

4.1 Impact of Increasing Number of Threads
Figure 9, 10 and 11 show the impact of increasing the number of
execution threads on vectorization for threads=1,2 and 4 respectively.
The performance improvement because of vectorization decreases
with increase in the number of execution threads. One possiblity
for such behavior could be that the opportunity of performance
improvement because of data parallelism reduces because of thread
level parallelism.

4.2 Comparison of Auto-vectorization and
Manual Vectorization

To study the difference in auto-vectorized code and the manually
vectorized code, we compared the performance improvements ob-
served for vector extensions in ParVec benchmark suite and the
improvement that is seen if the auto-vectorization is enabled in
ParSec benchmarks. This is shown in Figure 12 nad 13. The per-
formance improvements in case of manually vectorized code are
significantly higher than the case of auto-vectorization. This makes
sense, since manual vectorization in ParVec also involves othe modi-
fications in the code as well, e.g. they replaced data structures Array
of Structures (AoS) to Structure of Arrays (SoA) for Fluidanimate
benchmark.

2



bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5
No

rm
al

ize
d 

No
 

of
 C

yc
le

s
AVX SSE Scalar

Figure 1: Normalized Execution Cycles with and without vectorization (x86: AVX, SSE)

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Ti

m
e AVX SSE Scalar

Figure 2: Normalized Execution Time with and without vectorization (x86: AVX, SSE)

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

No
 o

f I
ns

tru
ct

io
ns AVX SSE Scalar

Figure 3: Normalized Instruction Counts with and without vectorization (x86: AVX, SSE)

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0

1

2

L1
 D

ca
ch

e 
Lo

ad
s AVX SSE Scalar

Figure 4: Normalized L1-Dcache Loads with and without vectorization (x86: AVX, SSE)

3



bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

L1
D 

M
iss

es
AVX SSE Scalar

Figure 5: Normalized L1-Dcache Misses with and without vectorization (x86: AVX, SSE)

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

2.0

LL
C 

M
iss

es

AVX SSE Scalar

Figure 6: Normalized LLC Misses with and without vectorization (x86: AVX, SSE)

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

2.0

Br
an

ch
 M

isp
re

di
ct

io
ns

AVX SSE Scalar

Figure 7: Normalized BP Misses with and without vectorization (x86: AVX, SSE)

bt.x cg.x ep.x is.x lu.x sp.x ua.x
0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Ti

m
e Neon Scalar

Figure 8: Execution Time Comparison for ARM with and without vectorization (Class B workloads)

4



bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5
No

rm
al

ize
d 

Ti
m

e AVX SSE Scalar

Figure 9: Impact of Vectorization with Threads = 1

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Ti

m
e AVX SSE Scalar

Figure 10: Impact of Vectorization with Threads = 2

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Ti

m
e AVX SSE Scalar

Figure 11: Impact of Vectorization with Threads = 4

blac
ksc

hole
s

sw
aption

s

fluidanimate vip
s

str
eam

clu
ste

r
0.0

0.5

1.0

No
rm

al
ize

d 
Ti

m
e

AVX
SSE
Scalar

Figure 12: ParVec Time with and without vectorization (x86: AVX, SSE)

5



blac
ksc

hole
s

sw
aption

s

fluidanimate vip
s

str
eam

clu
ste

r
0

1
No

rm
al

ize
d 

Ti
m

e
Vector Scalar

Figure 13: ParSec Time with and without vectorization (x86: AVX)

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x sp.x ua.x

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
No

 
of

 C
yc

le
s

AVX SSE Scalar

Figure 14: Execution Cycles with and without vectorization (x86: AVX, SSE), Fortran Version

bt.x cg.x dc.x ep.x ft.x is.x lu.x
mg.x

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
No

 
of

 C
yc

le
s

AVX SSE Scalar

Figure 15: Execution Cycles with and without vectorization (x86: AVX, SSE), C Version

4.3 Difference Between Fortan and C NAS
Parallel Benchmarks

Finally, we also looked at how the Fortran and C versions of NAS
parallel benchmarks will differ with respect to vectorization im-
provements, when auto-vectorization is enabled in gcc compilers.
Interestingly, Fortran version showed more improvement in perfor-
mance with vectorization.

5 CONCLUSION
In this work, we studied the performance differences across SIMD
extensions for HPC workloads and tried to figure out where do the
performance differences come from. We also looked at few other
important characteristics to compare studied SIMD extensions.

REFERENCES
[1] [n. d.]. Intel Streaming SIMD Extensions Technology Defined. https://www.intel.

com/content/www/us/en/support/processors/000005779.html Available: https://
www.intel.com/content/www/us/en/support-/processors/000005779.html [Online;
accessed 20-June-2017].

[2] [n. d.]. Introduction to IntelÂő Advanced Vector Extensions. https://software.
intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions Avail-
able: https://software.intel.com/en-us/articles/introduction-to-intel-advanced-
vector-extensions [Online; accessed 20-June-2017].

[3] [n. d.]. NEON. https://developer.arm.com/technologies/neon Available: https:
//developer.arm.com/technologies/neon [Online; accessed 20-June-2017].

[4] Ayaz Akram. 2017. A study on the impact of instruction set architectures on
processor’s performance. (2017).

[5] Ayaz Akram and Lina Sawalha. 2017. The impact of isas on performance. In
Workshop on Duplicating, Deconstructing and Debunking (WDDD) co-located
with 44th International Symposium on Computer Architecture (ISCA), Toronto,
Canada.

[6] Ayaz Akram and Lina Sawalha. 2019. A Study of Performance and Power Con-
sumption Differences Among Different ISAs. In 2019 22nd Euromicro Conference
on Digital System Design (DSD). IEEE, 628–632.

6

https://www.intel.com/content/www/us/en/support/processors/000005779.html
https://www.intel.com/content/www/us/en/support/processors/000005779.html
https://www.intel.com/content/www/us/en/support-/processors/000005779.html
https://www.intel.com/content/www/us/en/support-/processors/000005779.html
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon


[7] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski,
Rob S Schreiber, et al. 1991. The NAS parallel benchmarks. The International
Journal of Supercomputing Applications 5, 3 (1991), 63–73.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 72–81.

[9] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. 2013. Power
struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86
architectures. In 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 1–12.

[10] Juan M Cebrian, Magnus Jahre, and Lasse Natvig. 2015. ParVec: vectorizing the
PARSEC benchmark suite. Computing 97, 11 (2015), 1077–1100.

[11] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein. 2014. Com-
paring the performance of different x86 SIMD instruction sets for a medical
imaging application on modern multi-and manycore chips. In Proceedings of
the 2014 Workshop on Programming models for SIMD/Vector processing. ACM,
57–64.

[12] Ruby B Lee. November 1997. MULTIMEDIA EXTENSIONS FOR GENERAL-
PURPOSE PROCESSORS. In IEEE Workshop on Signal Processing Systems.
9–23.

[13] Milo Martin and Aaron Roth. [n. d.]. Instruction Set Architecture. https://
www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf Available: https:
//www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf [Online; accessed
1-June-2017].

[14] Gaurav Mitra, Beau Johnston, Alistair P Rendell, Eric McCreath, and Jun Zhou.
2013. Use of SIMD vector operations to accelerate application code performance
on low-powered ARM and Intel platforms. In 2013 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum. IEEE, 1107–
1116.

[15] David Patterson and Andrew Waterman. 2017. The RISC-V Reader: An Open
Architecture Atlas. Strawberry Canyon.

[16] Rafael Rico, Juan-Ignacio Pérez, and José Antonio Frutos. 2005. The impact of
x86 instruction set architecture on superscalar processing. Journal of Systems
Architecture 51, 1 (2005), 63–77.

[17] Nathan T Slingerland and Alan Jay Smith. June 2005. Multimedia Extensions
for General Purpose Microprocessors: A Survey. Elsevier Microprocessors and
Microsystems 29, 5 (June 2005), 225–246.

7

https://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf
https://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf
https://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf
https://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/02_isa.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Methodolgy
	4 Results
	4.1 Impact of Increasing Number of Threads
	4.2 Comparison of Auto-vectorization and Manual Vectorization
	4.3 Difference Between Fortan and C NAS Parallel Benchmarks

	5 Conclusion
	References

